
Building an Oracle 10g RAC database (using Linux, iSCSI, and SAN)

Building an Oracle 10g RAC database

(using Linux, iSCSI and SAN)
By Chris KIrlew

Overview
1)
2) Setup
3)
4) Network

5)
6)
7)
8)

Introduction

Installation of iSCSI

a. Verify channel-bonding
b. Setup channel-bonding
c. Setup Jumbo frames
d. Redundant Gig-E switches
e. Testing throughput
Installing OCFS
Prepare servers for Oracle Cluster software installation
Install Oracle CRS
Install Oracle Database system

Introduction
Current technology has provided users with increased computing power at reduced costs. Since
current servers are smaller, more powerful, and less costly than their predecessors, Server
Rooms have evolved from large stand alone servers to rack mounted, distributed systems. The
strength of the distributed system is in its redundancy. This type of architecture provides greater
reliability which overcomes the lower reliability of individual components. i.e., architecture
supersedes individual server quality. The distributed system architecture also allows for increases
in computing power in smaller increments which lowers expansion costs. In the past when a
server ran out of capacity it was replaced with a bigger ,higher capacity, server. However the
bigger server was more expensive and the capacity usually exceeded what was needed in order
accommodate future growth.There is also the factor of outages and what to do with the old
server.

Today a company can start with a basic two node, two SAN system and incrementally increase
the server’s capacity to a 128 node, 32 SAN system. Infrastructure cost of growth can now be
increased in smaller increments and smaller costs which reduces the timeframe for a company’s
return on investment (ROI). Also the server downtime is reduced and in today’s computing world
where many systems are 24 x 7 the previously acceptable downtime needed to change servers is
no longer practical. In the distributed Oracle RAC system I am discussing, no downtime is
necessary to increase capacity.

The Setup section lists the components used in setting up the e-commerce system I am
discussing. This distributed rack mounted computer system consists of several commodity

Page 1

Building an Oracle 10g RAC database (using Linux, iSCSI, and SAN)

servers (rack mounted servers clustered together) and connected to Gigabit Ethernet (GigE)
switches using two or more Network Interface Cards (NIC’s). Storage is located on Storage Area
Networks (SAN’s) which have two or more connections to the GigE switches.

Setup
The following was used to setup the e-commerce system:

1)
•
•

2)

3)
4)

5)

4 Dell commodity servers running RedHat ES3 (Linux 2.4 kernel)
2 of the above servers were used for the Web service
2 for the database

Dual NICs were used on each server to access the network and provide network access
redundancy
The network consists of four Gigabit Ethernet switches
The SAN originally had one box (dual NICs and dual power supply) but was expanded to two
boxes, with 14 ATA IDE disks in each box.
The two database servers ran Oracle 10g (10.1.0.3) RAC database

The database servers accessed the SAN using the iSCSI protocol. Read/write access to the
database files on the SAN by more than one server was possible with the use of the Oracle
Cluster File System (ocfs).

This system can be broken down into 3 subsystems; iSCSI, cluster and network. Lets now take a
brief look at these subsystems.

iSCSI

The movement away from servers with their own attached storage and towards the use of
external storage arrays accessed by a server has resulted in several methods for accomplishing
these remote connections. The most common methods are Myrinet and Infiniband which are
excellent technologies but expensive, proprietary, and carry a steep learning curve. Also
specialized and expensive switches and NIC’s are required, which limits these technologies to
major corporations who can afford them. Due to the factors mentioned, another method was
sought which would be cheaper and easier. This eventually led to the combining of two longtime
and well known technologies, SCSI and TCP/IP.

SCSI is a widely used method for allowing CPUs to access data on Hard Drives and TCP/IP
Ethernet Networking is the standard network protocol for connecting computers. When combined
the result is iSCSI. The appeal of this protocol lies in the use of the well understood and well
supported TCP/IP. The iSCSI protocol uses a client-server architecture. A "client" (i.e.: the server
OS) is the initiator which creates requests and the "server" (i.e.: a storage device) is the target,
which contains the data needed and answers requests from the initiator (i.e. client). The iSCSI
protocol defines how to encapsulate SCSI commands and data requests into IP packets which
are sent over an Ethernet connection; unpacks the IP packets; and creates a local stream of
SCSI commands or data requests. The initial translation of information to iSCSI is performed by
the “Initiator”.

There are two types of Initiators: software and hardware. A hardware initiator is an iSCSI HBA,
which is an ethernet card with a SCSI ASIC on-board to offload all the work from the system
CPU. Adaptec is currently selling iSCSI HBA's which have Linux drivers available. These network
cards can cost several hundred dollars per card but still represent a considerable saving over
proprietary technologies. Since there is minimal cost involved in using a software initiator, that
methodology was used and is the one that will be discussed.

A software initiator is a driver that manages the pairing of the SCSI drivers together with the
network interface driver. By using a software initiator most systems with an ethernet card can act

Page 2

Building an Oracle 10g RAC database (using Linux, iSCSI, and SAN)

as an iSCSI initiator. The initiator is located on a server and searches for available iSCSI targets
provided by the “target” software package (located on the SAN). The “target” software can be
used to build a SAN or a target server in a test environment. The assumption in made that the
SAN was purchased from a reputable vendor who provides iSCSI capable SANs, therefore the
target software is incorporated into the SAN operating system. Therefore the following pages will
concentrate on the installation and use of the initiator software. The initiator software package
and documentation can be downloaded from Sourceforge.org

Cluster
The core of a distributed infrastructure is the use of cluster software. This software permits
computers to pool resources to perform a given task and obtain the computing capacity of a much
larger computer but keep the computing service independent of the reliability of each individual
server. Servers can also be easily added or removed or switched from one cluster to another,
thereby reducing the cost of growth and change in the Data Center. The result is a superior level
of system availability, reliability, and flexibility.

The most common cluster types are:

•

•

•

A.

High-performance clusters, also known as parallel or computational clusters and are
generally used in systems that support large volumes of computational processing. In
these clusters a parallel filesystem distributes processing resources across the nodes,
which allows each node to access the same files at the same time via concurrent reads
and writes. They are generally characterized by having one or a few “head” servers and
many slave servers. The Beowulf Linux cluster, developed in the early 1990s by NASA, is
the most familiar example.
High-availability (HA) clusters are designed for fault tolerance or redundancy. Since
these clusters usually use two or more servers for processing, available servers are able
to assume processing responsibilities for server(s) that have failed. This type of cluster is
commonly found in the data-center and is thus the one used in Oracle 10g RAC.
Load-leveling or load-balancing clusters distribute workload as evenly as possible
across multiple servers (commonly web servers). Load balancing is also used in Oracle
10g RAC to distribute the workload of the database over the available servers.

Network
The iSCI and Oracle RAC systems are heavily dependent on a good network. The minimum
network speed that should be used is Gigabit Ethernet (GigE). A GigE switch reduces the
possibility of latency which affects the stability of the cluster connections and the iSCSI
connections to the SANs. There are several protocols that can be used but GigE is preferred
because it runs on any system that uses Ethernet, and many common GigE chipsets have Linux
driver support. The more powerful 10GigE would be preferred and may eventually become the
standard but is currently still new, expensive, and not supported by Linux.

To provide redundancy and to reduce the loss of a server due to the failure of a NIC card or
network switch, the use of channel bonding on each server is recommended. Channel bonding is
the use of two or more network interfaces to form a virtual network interface with one MAC
address. This allows the server to communicate using more than one NIC without creating
address conflicts.

Installation of ISCSI
It's important to understand that iSCSI makes block devices available via the network. In general,
block devices (disks) are mounted across an IP network to the local system and then used like
any other block device. As with any other block device an iSCSI device can be partitioned,
labeled, and a filesystem created on it. The operating system is able to read and write to the
iSCSI device as if it was a local hard disk. This allows the use of any filesystem (EXT2/3, JFS,

Page 3

Building an Oracle 10g RAC database (using Linux, iSCSI, and SAN)

XFS, ReiserFS, etc.). The iSCSI connected device is handled as a block device and only one
operating system can use the iSCSI device at a time unless a global filesystem, or read-only
filesystem is used. The global filesystem will be created later using OCFS.

All devices in an iSCSI enviroment have addresses and every address must be unique:Initiators
will have addresses, and targets will also have addresses. When you define a target you can
specify the address name yourself. When you use an initiator the address is typically defined for
you. Below is a test setup used for this example. The following addresses are used:
InitiatorName = iqn.1987-05.com.cisco:01.b711bbb384bd
TargetName = iqn.2001-05.com.equallogic:6-8a0900-e7ca50901

The Initiator name has as part of its name the default iqn.1987-05.com.cisco. This is a
legacy of the software’s early development by Cisco Systems. The Initiator name can be changed
by editing the /etc/initiatorname.iscsi file with the iSCSI service stopped and prior to
establishing a connection to a target.

The following is a list of required terms:

An iSCSI portal is a target IP and TCP port number pair. If the port number is not specified the
default is 3260.

Discovery, or auto-discovery, is the process of the initiator requesting a target portal for a list of
targets and making them available for the initiator to use. The use of discovery on a target portal
is usually the best way to get connected. Alternately, a specific portal and target may be
specified.

Task I: Install the ISCSI Initiator

Step 1: Go to the sourceforge webpage and download the latest initiator, for the linux kernel
version of the Server. Download the latest production driver package. The initiators
can be found at http://sourceforge.net/projects/linux-iscsi.

Note: Use the standard packaged drivers since RPMs are usually a revision or more
behind the latest drivers

Step 2: Place the driver in a directory such as ‘/usr/src’

Note: Log in as root or have root privileges to complete the installation.

Step 3: Go to the directory where the package was placed:
cd /usr/src
ls
output:
linux-iscsi-3.4.3-linux-iscsi-3.4.4.tgz

Step 4: Install the files and then check the folder created.
tar –xzfv linux-iscsi-3.4.4-linux-iscsi-3.4.4.tgz
cd linux-iscsi*

Step 5: Check for the expected archive files
ls

output:
COPYING iscsid.h iscsi-portal.h
init.c iscsi-discovery.c iscsi-probe.c
install.sh iscsi-discovery.h iscsi-probe.h
iscsiAuthClient.c iscsigt.c iscsi-protocol.h
iscsiAuthClientGlue.c iscsi.h iscsi-session.h

Page 4

http://sourceforge.net/projects/linux-iscsi

Building an Oracle 10g RAC database (using Linux, iSCSI, and SAN)

iscsiAuthClientGlue.h iscsi-hooks.h iscsi-slp-
discovery.c
iscsiAuthClient.h iscsi-iname.c iscsi-slp-
discovery.h
iscsi.bindings.5 iscsi-io.c iscsi-task.h
iscsi-bindings.c iscsi-ioctl.h iscsi-trace.h
iscsi-bindings.h iscsi-io.h iscsi-umountall
iscsi.c iscsi-kernel.h iscsi-version.h
iscsi-common.h iscsi-limits.h Makefile
iscsi.conf iscsi-linux.c md5.c
iscsi.conf.5 iscsi-login.c md5.h
iscsi-config.c iscsi-login.h mkinitrd.iscsi
iscsi-config.h iscsi-ls.1 rc.iscsi
iscsi-crc.c iscsi-ls.c README
iscsi-crc.h iscsilun.c remove.sh
iscsid.8 iscsi-mountall string-buffer.c
iscsid.c iscsi-network-boot.c string-buffer.h
iscsi-device.c iscsi-platform.h upgrade.sh

Task II: Compile the driver using the make command

Step 1: Inside the directory (i.e linux-iscsi-3.4.4) use the make command:
make

Output:

Note:Using kernel source from /lib/modules/2.4.21-32.EL/build containing kernel
version 2.4.21-32.ELcustom

Note: using kernel config from /boot/config-2.4.21-32.EL
gcc -D__KERNEL__ -I/usr/src/linux-2.4.21-32.EL/include -Wall -
Wstrict-prototypes -Wno-trigraphs -O2 -fno-strict-aliasing -
fno-common -Wno-unused -fomit-frame-pointer -pipe -ffixed-r13
-mfixed-range=f10-f15,f32-f127 -falign-functions=32 -frename-
registers --param max-inline-insns=5000 -DMODULE -DMODVERSIONS
-include /usr/src/linux-2.4.21-
32.EL/include/linux/modversions.h -DLINUX=1 -
I/lib/modules/2.4.21-32.EL/build/drivers/scsi -
DHAS_SET_USER_NICE=1 -DHAS_REPARENT_TO_INIT=1 -
DUSE_SPINLOCK_HOST_LOCK=1 -MMD -c -o /usr/src/linux-iscsi-
3.4.4/Linux-ia64/kobj/iscsi.o iscsi.c

...

...

...

Task III: Install the driver with the make install command

Step 2: Enter the following command:
make install

Output:

Note: using kernel source from /lib/modules/2.4.21-32.EL/build containing
kernel version 2.4.21-32.ELcustom

Note: Using kernel config from /boot/config-2.4.21-32.EL

Installing iSCSI driver for Linux 2.4.21-32.EL

Page 5

Building an Oracle 10g RAC database (using Linux, iSCSI, and SAN)

The initialization script has been installed as /etc/rc.d/init.d/iscsi.

iSCSI is set up to run automatically when you reboot

InitiatorName iqn.1987-05.com.cisco:01.1b61d6f98cf was generated and

written to /etc/initiatorname.iscsi.

Reinstalling configuration file /etc/iscsi.conf

Task IV: Modify /etc/iscsi.conf file

Edit the iscsi.conf file so that the initiator points to the address of the array. It should resemble the
file below. Add the lines displayed in bold and highlighted in yellow below to the file or edit the
existing lines in the file. Placement in the file is not critical. The example lines use the IP address
of 192.168.10.94 (replace this with the IP address of the array).

Note: The entire iscsi.conf file is not shown. For more information on other
configuration options, consult the README included with the initiator drivers.

cd /etc
vi iscsi.conf

Page 6

Building an Oracle 10g RAC database (using Linux, iSCSI, and SAN)

iSCSI configuration file - see iscsi.conf(5)
Authentication Settings

Configure a default Username and Password to use for CHAP (optional)
authentication by specifying the Global username and password parameters
in the format as mentioned below. These entries will need to precede any
"DiscoveryAddress" entries if authentication needs to be enabled for all the
iSCSI targets.

Example:
#Username=alice
#Password=nty57nbe
or
#OutgoingUsername=alice
#OutgoingPassword=nty57nbe

added for SAN array
DiscoveryAddress=192.168.10.94
SendAsyncText=yes
Continuous=yes

The "OutgoingUsername" will specify the username to be sent to the target for login
authentication. The "OutgoingPassword" is the CHAP secret password to be used when
sending challenge responses to the target.

configure CHAP authentication settings that will apply to every target discovered at a particular
address by adding "OutgoingUsername=u".

……

……

Task V: Start the ISCSI initiator.

Step 1: Reboot the system so that the system reads the iSCSI configuration file.

Note: If a reboot is not desired, then use the following:
/etc/init.d/iscsi start or
service iscsi start

Task VI: Identify the device name.

Step 1: To mount the volumes we must first get the assigned device names, which are
needed to create the file systems and mount the partitions.

Use the dmesg command to review the boot log file
dmesg | more

Look for the device name that is similar to ‘attached scsi disk sdc’. If more than
one volume is found, there will be several device names listed. The entries are usually
towards the end of the file.

Example:

Page 7

Building an Oracle 10g RAC database (using Linux, iSCSI, and SAN)

.

.

.
iSCSI: bus 0 target 1 portal 0 = address 10.5.1.98 port 3260
group 0
iSCSI: bus 0 target 1 trying to establish session
e0000000772c0000 to portal 0,
address 10.5.1.98 port 3260 group 0
iSCSI: session e0000000755b8000 login to portal 0 temporarily
redirected to 10.5
.1.99 port 3260
iSCSI: bus 0 target 0 trying to establish session
e0000000755b8000 to portal 0,
address 10.5.1.99 port 3260 group 0
iSCSI: bus 0 target 0 established session e0000000755b8000 #1
to portal 0, addre
ss 10.5.1.99 port 3260 group 0, alias volume2
scsi singledevice 2 0 0 0
 Vendor: EQLOGIC Model: 100E-00 Rev: 2.2
 Type: Direct-Access ANSI SCSI
revision: 05
Attached scsi disk sdc at scsi2, channel 0, id 0, lun 0
iSCSI: bus 0 target 2 = iqn.2001-05.com.equallogic:6-8a0900-
90ca50901-111ff036fa
e43060-volume4
iSCSI: bus 0 target 2 portal 0 = address 10.5.1.98 port 3260
group 0
SCSI device sdc: 2119680 512-byte hdwr sectors (1085 MB)
 sdc: unknown partition table
.

.

Shift q to exit

The devices will normally appear in the following order: sda, sdb, sdc. This depends
on the number of volumes for the server. (e.g. volume 1 will be device sda; volume 2
will be sdb; volume 3 will be sdc etc.). Since this is not definite the boot log file must
be checked.

Task VII: Create new Linux (ext2, ext3 etc..) partition

Note: NOTE: If the entire volume is configured as one Linux partition, then this step is
not necessary. Proceed to Task 8: “Create the file system”.If no unix files will be
created on the SAN and the ocfs file system is to be installed instead then
proceed to the section “Installation of OCFS”.

Step 1: Enter the following command:
fdisk /dev/sda

Answers to the menu options are noted in bold type.

Output:

The number of cylinders for this disk is set to 4427.

Page 8

Building an Oracle 10g RAC database (using Linux, iSCSI, and SAN)

There is nothing wrong with that, but this is larger than 1024,
and could in certain setups cause problems with:
1) software that runs at boot time (e.g., old versions of LILO)
2) booting and partitioning software from other OSs (e.g., DOS FDISK, OS/2
FDISK)1) software that runs at boot time (e.g., old versions of LILO)

Command (m for help):
Command (m for help): m
Command action
 Command action
 a toggle a bootable flag
 b edit bsd disklabel
 c toggle the dos compatibility flag
 d delete a partition
 l list known partition types
 m print this menu
 n add a new partition
 o create a new empty DOS partition table
 p print the partition table
 q quit without saving changes
 s create a new empty Sun disklabel
 t change a partition's system id
 u change display/entry units
 v verify the partition table
 w write table to disk and exit
 x extra functionality (experts only)

Command (m for help): n
Command action
 e extended
 p primary partition (1-4)
p
Partition number (1-4): 1
First cylinder (1-13320, default 1):
Using default value 1
Last cylinder or +size or +sizeM or +sizeK (1-13320, default
13320):
Using default value 13320

Command (m for help): w
The partition table has been altered!

Calling ioctl() to re-read partition table.
Syncing disks.

Task VIII: Create the file system

Page 9

Building an Oracle 10g RAC database (using Linux, iSCSI, and SAN)

Step 1: Enter the following command
mkfs /dev/sda

Output:

mke2fs 1.32 (09-Nov-2002)
/dev/sda is entire device, not just one partition!
Proceed anyway? (y,n) y
Filesystem label=
OS type: Linux
Block size=4096 (log=2)
Fragment size=4096 (log=2)
1706880 inodes, 3409920 blocks
170496 blocks (5.00%) reserved for the super user
First data block=0
105 block groups
32768 blocks per group, 32768 fragments per group
16256 inodes per group
Superblock backups stored on blocks:
 32768, 98304, 163840, 229376, 294912, 819200, 884736,
1605632, 2654208

Writing inode tables: done
Writing superblocks and filesystem accounting information: done

This filesystem will be automatically checked every 35 mounts
or
180 days, whichever comes first. Use tune2fs -c or -i to
override.

Task IX: Mount the file system

Step 1: Check the file system before adding using df or mount commands
df –k

 Output:

Filesystem 1K-blocks Used Available Use% Mounted on
/dev/md0 10315000 2099776 7691248 22% /
/dev/sdb4 45386 0 45386 0% /opt
/dev/sda1 51082 8532 42550 17% /boot
none 1019184 0 1019184 0% /dev/shm
/dev/md1 7740760 2751392 4596160 38% /u01

Step 2: Create mount point and verify or modify permissions on the directory for correct user
and group access.
mkdir /u02

Page 10

Building an Oracle 10g RAC database (using Linux, iSCSI, and SAN)

Step 3: Mount file system using the logical mount points that were created and noted in the
dmesg output. (e.g /dev/sdc)
mount /dev/sdc /u02

Step 4: Verify by using the df –h command, that the output shows the expected partition.
df –h

 Output:

Filesystem 1K-blocks Used Available Use% Mounted on
/dev/md0 10315000 2099776 7691248 22% /
/dev/sdb4 45386 0 45386 0% /opt
/dev/sda1 51082 8532 42550 17% /boot
none 1019184 0 1019184 0% /dev/shm
/dev/md1 7740760 2751392 4596160 38% /u01
/dev/sdc 1057888 44768 1013120 5% /u02

Task X: Modify /etc/fstab.iscsi

Note: Make a copy of the /etc/fstab.iscsi to create a backup of the file in case there is any
editing errors or file corruption.
cp /etc/fstab.iscsi /etc/fstab.iscsi.bak

Step 5: Edit the file to add lines for each of the iscsi volumes and mount points so that they
will automatically mount on startup or reboot.
vi /etc/fstab.iscsi

/etc/fstab.iscsi file for filesystems built on iscsi devices.

A typical entry here would look like:
/dev/iscsi/bus0/target0/lun0/disk /mnt ext2 defaults 0 0

Where /dev/iscsi/bus0/target0/lun0/disk is an iscsi device

Line added for SAN volumes
/dev/sdc /u02 ext3 defaults 1 1

 # See fstab(5) for further details on configuring devices.

Task XI: Edit the /etc/fstab file

Page 11

Building an Oracle 10g RAC database (using Linux, iSCSI, and SAN)

.

.
/dev/sdc /u02 ext3 _netdev
.
.

Task XII: Reboot and verify that no errors appear on reboot

Step 1: Enter the following command
reboot or
init 6 or
shutdown –r

Step 2: Redo df –k or mount to verify that the directory mounted and that the volume is
correct:
df –k

Output::

Filesystem 1K-blocks Used Available Use% Mounted on
/dev/md0 10315000 2099776 7691248 22% /
/dev/sdb4 45386 0 45386 0% /opt
/dev/sda1 51082 8532 42550 17% /boot
none 1019184 0 1019184 0% /dev/shm
/dev/md1 7740760 2751392 4596160 38% /u01
/dev/sdc 1057888 44768 1013120 5% /u02

B. Setup Network
Choosing a network interconnect is important and depends on your system requirements and
your budget. If Ethernet is the choice for the network then Gigabit Ethernet is the preferred
choice. If a faster protocol is needed then 10Gigabit Ethernet is available but, as stated earlier,
there is a limited number of vendors, the cost is high, and the protocol is not supported by Linux
2.4 or 2.6 kernels. Also, most server motherboards do not support the 10GigE protocol at this
time. However, support is provided by a few vendors and the 10GigE protocol is the preferred
solution for certain situations.

The setup discussed in this document is based on a GigE network. Most servers today have
motherboards that support GigE and many are available with 64bit PCI GigE NICs. The GigE
protocol is supported by both the Linux 2.4 and 2.6 kernels.

The rise in data traffic for most modern systems can place a heavy load on the CPU since most
network cards use the CPU to process the TCP/IP packets. The addition of iSCSI support also
adds to this burden. The problem is due to GigE still being based on the standard Ethernet MTU
(Maximum Transmission Unit) size of 1500 bytes. Each Ethernet packet causes an interrupt
which is serviced by the CPU. At the maximum speed of the NIC this can amount to 80000
interrupts per second. To reduce this burden on the CPU a number of solutions are available.

The first and easiest is the use of a larger MTU usually referred to as a “Jumbo Frame”. Most
GigE NICs support MTU sizes up to 9000 bytes. Implementing Jumbo Frames should reduce the

Page 12

Building an Oracle 10g RAC database (using Linux, iSCSI, and SAN)

number of interrupts by up to a factor of 6. This will also require that the network switches support
Jumbo Frames. I will explain later in this chapter how to reset the MTU to the larger size.

The second way to reduce CPU processing of TCP packets is to offload the processing to a GigE
NIC that handles the packet processing. This is usually referred to as TOE (TCP Off-Load
Engine). A TOE helps to reduce the CPU load and reduce the number of interrupts. However, it
does not do anything to reduce latency. The use of RDMA (Remote Direct Memory Access) NIC’s
with TOE capabilities provides the necessary latency reduction.

To further reduce the load on the CPU a third method is to use an HBA (Host Bus Adapter) that
will handle the TCP processing and the iSCSI translation. These switches can be somewhat
expensive but provide a real benefit in increased performance of the cluster.

To ensure that there is no single point of failure in our setup we have used more than one server,
dual SANs and several network switches. We can extend this redundancy by ensuring that each
server is not lost simply due to a NIC card failure. To allow the use of two NIC cards with Linux,
the use of “channel bonding” will be required. The setting of this protocol will be discussed later
but I will briefly explain this function. Channel bonding is the combining of two or more network
interfaces to one MAC address. Basically channel bonding enables two or more NIC cards to act
as one network interface which simultaneously increases the bandwidth and provides
redundancy. Without channel bonding there would be a network failure caused by multiple MAC
addresses from the same server on the same network.

Each server should have access to more than one network switch to provide redundancy and
provide a second path to the other servers in the cluster and the SAN. All the switches should be
interconnected. This will mean that a lot of ports will be used to provide switch interconnect.
Therefore switches should have an adequate number of ports.

To guard against the loss of a server due to the failure of a NIC card, network line or switch the
use of more than one network connection to two or more switches is recommended. Most servers
have slots for two NICS. However, if you wish to have network redundancy within a database
cluster which is on one network plus have redundant access to other servers (i.e. web servers) on
another network then two NICS for each network will be needed.

Page 13

Building an Oracle 10g RAC database (using Linux, iSCSI, and SAN)

Once channel bonding has been activated, the NIC’s will be able to share the same IP address.
The full instruction on channel bonding can be found on the Linux server (assuming you installed
the necessary docs) at /usr/src/linux-2.4/Documentation/networking/bonding.txt

Channel bonding requires each cluster member to have two Ethernet devices installed. When it is
loaded, the bonding module uses the MAC address of the first enslaved network device and
assigns that MAC address to the other network device.

In the configuration, shown by the diagram, there are two servers each attached to both switches.
The switches have a connection to the outside or to a SAN. There is an ISL - Inter Switch Link
between both switches. One and only one slave on each host is active at a time (mode=1), but all
links are still monitored and the system can detect a failure of the active or backup links.

The server uses its active interface until it goes down and then it switches to the new one until it
goes down. In this example, the clusters fault tolerance is slightly affected by the expiration time
of the switches' forwarding tables.

Server one’s active interface is connected to one switch while Server two’s active interface is
connected to the other switch. This setup will survive a failure of a single server, NIC card, cable,
or switch. In the case of a switch failure one of the servers will be temporarily unreachable until
the other switch expires its tables. After this interval the cluster system will be back at full
capacity.

A. Verify Channel Bonding Support
Task I: Determine if ifenslave is installed and install if necessary

Step 1: Enter the following command
whereis ifenslave

Step 2: To install ifenslave:
gcc -Wall -Wstrict-prototypes -O -I/usr/src/linux/include
ifenslave.c -o ifenslave

Task II: Check if installation supports bonding

Step 1: To check if your version of Linux uses sysconfig or initscripts, and to get the installed
version enter the following command:
$ rpm -qf /sbin/ifup

Step 2: The system should return either "initscripts" or "sysconfig," followed by the version
number.

Example: initscripts-7.31.18.EL-1. This is the package that provides your network
initialization scripts.

Step 3: Enter the following command to determine if the initscript or sysconfig supports
bonding:
grep ifenslave /sbin/ifup

Step 4: If the system returns matches, then the initscripts or sysconfig has support for
bonding.

Step 5: To get a list of the bonding options enter the following command:

/sbin/modinfo bonding

Page 14

Building an Oracle 10g RAC database (using Linux, iSCSI, and SAN)

B. Setup Channel Bonding
Task I: Create a bonding device

Step 1: Add an alias line to create bonding devices in /etc/modules.conf:
alias bond0 bonding
alias eth0 e1000
alias eth1 e1000

This loads the bonding device with the bond0 interface name, as well as passes options to the
bonding driver to configure it as an active- backup master device for the enslaved network
interfaces.

Task II: Add bonding parameters

Step 1: Check the module bonding parameters before adding them to the /etc/modules.conf
file.
/sbin/insmod bond0 miimon=100 mode=1

Step 2: Look at /var/log/messages to see if any errors were created.
tail –f /var/log/messages

Note: The parameter miimon specifies in milliseconds how often link monitoring
occurs. This verifies if a NIC is active.

Step 3: Verify that the network interfaces eth0 and eth1 support MII (Media-Independent
Interface). Use the following command:
ethtool eth0 | grep “Link detected:”

Step 4: The system should return:
Link detected: yes

Step 5: The parameter mode has several values available:0 – 6. For fault tolerance use
mode=1.

Note: All transmissions are sent and received from the same slave interface and NIC.
The other interface will be used only if the active slave interface fails.

Step 6: The updated /etc/modules.conf file should resemble the following
alias bond0 bonding
options bonding miimon=100 mode=1

Note: The miimon parameter must be specified or there can be a severe degradation of
network performance if a link fails.

Note: The mode default parameter is 0. This places the bonding driver in a round-robin
mode. If a NIC fails the failed NIC will still be used by the driver. This will lead to a
loss of the iSCSI connection and if the connection loss is long enough to activate
the hang-check timer, the server will reboot.

Task III: Configure bonding device

Step 1: To configure bonding device first enter the following command
ifconfig bond0 10.4.1.201 netmask 255.255.255.0 broadcast
10.4.1.255 up

Step 2: Add slave interfaces to the bond.
ifenslave bond0 eth0 eth1

Page 15

Building an Oracle 10g RAC database (using Linux, iSCSI, and SAN)

Step 3: Test the network connections to determine if they are working as expected.

Step 4: To make the settings permanent, create a configuraton file for the bonding device and
update the configuration files of the slave interfaces.

Task IV: Create configuration file for the bonding device

Step 1: Create a network script for the bonding device.(ex. /etc/sysconfig/network-scripts/ifcfg-
bond0)

DEVICE=bond0
USERCTL=no
ONBOOT=yes
BROADCAST=10.4.1.255
NETWORK=10.4.1.0
NETMASK=255.255.255.0
GATEWAY=10.4.1.1
IP ADDR=10.4.1.201

Task V: Edit the configuration files of the network devices

Step 1: Edit the /etc/sysconfig/network-scripts/ifcfg-eth? configuration file for both eth0 and
eth1. Add the “MASTER=” and “SLAVE=” lines to their files. For example:

DEVICE=eth0
USERCTL=no
ONBOOT=yes
MASTER=bond0
SLAVE=yes
BOOTPROTO=none

Step 2: This enslaves eth0 to the bond0 master device. Repeat for the other network devices.

Step 3: Restart the server or network.Reboot the system for the changes to take effect or
manually load the bonding device and restart the network. For example:
/sbin/insmod /lib/modules/`uname -
r`/kernel/drivers/net/bonding/bonding.o miimon=100 mode=1
/sbin/service network restart

Task VI: Check that bonding is working

Step 1: Enter the following command to check if bonding is working:
ifconfig

bond0 Link encap:Ethernet HWaddr 00:0B:0D:30:EE:0D
 inet addr:10.4.1.201 Bcast:10.4.1.255 Mask:255.255.255.0
 UP BROADCAST RUNNING MASTER MULTICAST MTU:1500 Metric:1
 RX packets:14675843 errors:0 dropped:0 overruns:0 frame:0
 TX packets:15331356 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:9593922960 (9149.4 Mb) TX bytes:10201693503 (9729.0 Mb)
 Base address:0xcc80 Memory:f9fc0000-f9fe0000

Page 16

Building an Oracle 10g RAC database (using Linux, iSCSI, and SAN)

eth0 Link encap:Ethernet HWaddr 00:0B:0D:30:EE:0D
 inet addr:10.4.1.201 Bcast:10.4.1.255 Mask:255.255.255.0
 UP BROADCAST RUNNING SLAVE MULTICAST MTU:1500 Metric:1
 RX packets:25845732 errors:0 dropped:0 overruns:0 frame:0
 TX packets:27578563 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:9593922960 (9149.4 Mb) TX bytes:10201693503 (9729.0 Mb)
 Base address:0xcc80 Memory:f9fc0000-f9fe0000

eth1 Link encap:Ethernet HWaddr 00:0B:0D:30:EE:0D
 inet addr:10.4.1.201 Bcast:10.4.1.255 Mask:255.255.255.0
 UP BROADCAST RUNNING SLAVE MULTICAST MTU:1500 Metric:1
 RX packets:16457297 errors:0 dropped:0 overruns:0 frame:0
 TX packets:17136743 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:9593922960 (9149.4 Mb) TX bytes:10201693503 (9729.0 Mb)
 Base address:0xcc80 Memory:f9fc0000-f9fe0000

Task VII: Verify network link

Step 1: Enter the following command to verify the network link:
mii-tool –v eth0

Step 2: Output:
eth0: negotiated 100baseTx-FD, link ok
 product info: vendor 00:50:43, model 2 rev 5
 basic mode: autonegotiation enabled
 basic status: autonegotiation complete, link ok
 capabilities: 100baseTx-FD 100baseTx-HD 10baseT-FD 10baseT-HD
 advertising: 100baseTx-FD 100baseTx-HD 10baseT-FD 10baseT-HD
flow-control
 link partner: 100baseTx-FD 100baseTx-HD 10baseT-FD 10baseT-HD

C. Setup Jumbo Frames
Task I: Determine if Jumbo Frames is supported

Step 1: When implementing Jumbo Frames ensure that the switches can support Jumbo
Frames then activate the Jumbo Frame support on the switches.

Note: Refer to your switch documentation if needed to determine how to accomplish
this adjustment.

Step 2: Check the SAN for Jumbo Frame support.

Note: Almost all iSCSI SAN’s support Jumbo Frames and the vendor documentation
should cover activation.

Step 3: Adjust the server NIC’s for the database nodes, on the internal network, for Jumbo
Frames.

Note: Activate Jumbo Frames on the internal network only and not on the public
network connection.

Task II: Determine MTU

Step 1: Use ifconfig to determine the present MTU of the interface

Page 17

Building an Oracle 10g RAC database (using Linux, iSCSI, and SAN)

ifconfig eth2

Step 2: The system should return the following output, also note the present MTU is 1500
bytes which is the Ethernet standard:

 eth2 Link encap:Ethernet HWaddr 00:11:11:E3:A6:8B
 inet addr:10.0.0.30 Bcast:10.0.0.255 Mask:255.255.255.0
 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
 RX packets:4542662 errors:0 dropped:0 overruns:0 frame:0
 TX packets:3687494 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:1367245590 (1303.9 Mb) TX bytes:498266982 (475.1 Mb)
 Interrupt:16

The size of the MTU can be increased up to 16,110 bytes. Since many switches do not go that
high, a reasonable increase would be up to 9K bytes. However, check your switch and SAN
documentation to see what is the highest frame size supported.

Task III: Increase MTU

Use The following command To increase the MTU which will provide 9216 byte
frames.

ifconfig eth2 up mtu 9216

C. INSTALLING OCFS
The Oracle Cluster File System is a shared disk cluster file system and is designed to hold Oracle
datafiles, logfiles and control files. It is not designed to be used as a general file system. If a
shared cluster file system is needed for Linux files then another cluster file system must be used.
The RedHat Cluster File System is approved for use with Oracle Clusters and will support the
Linux file systems. For detailed information and explanation of the OCFS setup see the OCFS
Users Guide. The Oracle ocfs can be downloaded from http://oss.oracle.com/projects/ocfs
for a number of Linux distributions.

Task I: Install OCFS software

There are three rpm packages that will have to be downloaded: ocfs-module, ocfs-support, ocfs-
tools. The OCFS must be installed using root.

Step 1: After the packages have been downloaded install them using the following command:
rpm -Uhv ocfs*.rpm

Note: The source code is available for download and it is possible to compile the
software but Oracle will not provide support.

Task II: Verify ocfs will initialize on startup

Step 1: Type in the following command to verify that the ocfs will initialize on startup
chkconfig - -list | grep –i ocfs

The system should return the following:
ocfs 0:off 1:off 2:off 3:on 4:on 5:on 6:off

Step 2: The numbers shown represent the rc levels. If either 3, 4, or 5 is “off” then enter the
following command:
chkconfig ocfs on

Page 18

http://oss.oracle.com/projects/ocfs

Building an Oracle 10g RAC database (using Linux, iSCSI, and SAN)

Task III: Create /etc/ocfs.conf file

Step 1: Create the /etc/ocfs.conf file manually or use the ocfstool.

Create the file and add the following information:
ocfs config
Ensure this file exists in /etc

 node_name = titanium
 ip_address = 10.5.1.61
 ip_port = 7000
 comm_voting = 1

Step 2: Use this command at the root to generate the uid key. This key is used by the OCFS
to identify itself in the cluster.:
ocfs_uid_gen –c

After running the command check the /etc/ocfs.conf file. It should have a line added to the file
similar to:

guid = BB8DA06A31BCB25DF4CBB0003470CFE75

Step 3: To use the ocfstool to generate the /etc/ocfs.conf file start the GUI:

ocfstool &

Once the GUI has started then go to Tasks -> Generate Config

Page 19

Building an Oracle 10g RAC database (using Linux, iSCSI, and SAN)

Task IV: Start the OCFS

/etc/init.d/ocfs start

Output: Loading OCFS: [OK]

If this command should fail then use:

load_ocfs

Task V: Format the OCFS partition

The formatting of the OCFS partitions can be done manually or by using the GUI. The manual
method is done using the mkfs.ocfs command. The –F option is not needed if this is a first time
format of the partition.

Note: This only needs to be done by the first node in the cluster. Once the shared
volume has been formatted the other nodes only need to mount the volume.

Page 20

Building an Oracle 10g RAC database (using Linux, iSCSI, and SAN)

mkfs usage: mkfs.ocfs -b block-size [-C] [-F] [-g gid] [-h] -L volume-label -m mount-
path [-n] [-p permissions] [-q] [-u uid] [-V] device

mkfs.ocfs -F -b 128 -g dba -u oracle -L /u02 -m /u02 - p 775 /dev/sdc

Output:

Checking heart beat on volume
Clearing volume header sectors...Cleared volume header sectors
Clearing node config sectors...Cleared node config sectors
Clearing publish sectors...Cleared publish sectors
Clearing vote sectors...Cleared vote sectors
Clearing bitmap sectors...Cleared bitmap sectors
Clearing data block...Cleared data block
Writing volume header...Wrote volume header

To format using the GUI click on Tasks -> Format. A new small window will appear.

Note: Pay attention to ownership (user and group). Since the installation is being done
by root the default is root. This will make the file system inaccessable to oracle.

Step 4: Mount OCFS partition

mount –t ocfs /dev/sdc /u02

To ensure that the partitions mount on startup, update the /etc/fstab file.

/dev/sdc /u02 ocfs _netdev

Page 21

Building an Oracle 10g RAC database (using Linux, iSCSI, and SAN)

D. Prepare Servers for CRS Installation

See the latest Oracle Real Application Clusters Installation and Configuration Guide for the most
current information. As of this writing it was Part No. 10766-08. It can be downloaded at
http://www.oracle.com/technology/documentation/database10g.html . Along with ssh and scp, rsh
and rcp need to be installed. To install the Oracle cluster software using the GUI interface, you
will need to have an X-windows server and client running and configured on your Desktop (ex.
Cygwin).

Step 1: Verify servers meet hardware and software requirements: check the Guide.

a. Check Oracle’s Certification Matrix at metalink.oracle.com to determine supported hardware
and operating systems.

b. Check that the relevant software packages have been installed.

Refer to the latest version of Oracle Real Application Clusters Installation and Configuration
Guide for the required packages. The following packages were needed for an installation on
RedHat Linux ES3 for Itanium:

make-3.79.1
gcc-3.2.3-20
gcc-c++-3.2.3-20
glibc-2.3.2-95.3
compat-db-4.0.14-5
compat-gcc-7.3-2.96.128
compat-gcc-c++-7.3-2.96.128
compat-libstdc++-7.3-2.96.128
compat-libstdc++-devel-7.3-2.96.128
openmotif21-2.1.30-8
setarch-1.3-1

To verify if the above packages are installed use the rpm command:

rpm –q package_name (ex rpm –q compat-gcc-c++-*)
Note: Place the asterisk after the dash “-“ and before a number.

Step 2. Setup /etc/hosts file.

Page 22

http://www.oracle.com/technology/documentation/database10g.html

Building an Oracle 10g RAC database (using Linux, iSCSI, and SAN)

Do not remove the following line, or various programs
that require network functionality will fail.
127.0.0.1 localhost.localdomain localhost
10.2.1.211 titanium
10.2.1.201 copper
Private IP addresses for the rac nodes
10.5.1.61 rac2-priv1
10.5.1.51 rac1-priv1
Virtual IP addresses for the rac nodes
10.2.1.205 rac1-vip
10.2.1.215 rac2-vip

Step 3: Create Users and Groups
Add the user groups dba, oper, oinstall to all nodes

/usr/sbin/groupadd –g 501 dba

Add the oracle user if it doesn’t exist to all nodes

/usr/sbin/useradd -u 200 -g oinstall -G dba,oper oracle
To modify the user if it exists

/usr/sbin/usermod

All equivalent users and groups must have the same GID on all nodes

Update the file .bash_profile and add the following:

umask 022
PATH=/bin:/usr/bin:/usr/local/bin:/usr/X11R6/bin
LD_LIBRARY_PATH=/usr/lib:/usr/X11R6/lib
ORA_CRS_HOME=/u01/crs/oracle/product/10.1.0.3/crs1
ORACLE_BASE=/u01/app/oracle
ORACLE_HOME=$ORACLE_BASE/product/10.1.0.3/db1
ORACLE_SID=orcl
LD_LIBRARY_PATH=$ORACLE_HOME/rdbms/lib:$ORACLE_HOME/lib:
$ORACLE_HOME/jdk/fre/lib/i386:$ORACLE_HOME/jdk/jre/lib/
i386/server:$LD_LIBRARY_PATH:$CRS_HOME/lib:$CRS_HOME/rdbms/lib
PATH=$ORACLE_HOME/bin:$PATH:$ORA_CRS_HOME/bin:/home/oracle
export PATH LD_LIBRARY_PATH
export ORACLE_BASE ORACLE_HOME ORACLE_SID ORA_CRS_HOME
unset USERNAME

Step 4: Install and configure ssh, scp, rsh and rcp

1. Login as the oracle user

Page 23

Building an Oracle 10g RAC database (using Linux, iSCSI, and SAN)

2. Create the directory .ssh

$ mkdir ~/.ssh
$ chmod 755 ~/.ssh

3. Generate an RSA key. At the prompts accept the default location and enter a pass phrase (not
oracle password)

$ /usr/bin/ssh-keygen -t rsa
A public key is written to ~/.ssh/id_rsa.pub and a private key is written to the file
~/.ssh/id_rsa.

4. Generate a DSA key.

$ /usr/bin/ssh-keygen -t dsa
A public key is written to ~/.ssh/id_dsa.pub and a private key is written to the file
~/.ssh/id_dsa.

5. Copy the contents of the ~/.ssh/id_rsa.pub and ~/.ssh/id_dsa.pub files to the
~/.ssh/authorized_keys file on this node and to the same file on all other cluster nodes.

Note: The ~/.ssh/authorized_keys file on every node must contain the contents

from all of the ~/.ssh/id_rsa.pub and ~/.ssh/id_dsa.pub files that you
generated on all cluster nodes.

6. Change the permissions on the ~/.ssh/authorized_keys file on all cluster

nodes:

$ chmod 644 ~/.ssh/authorized_keys

7. If you use ssh to log in to or run a command on another node, you are prompted for the
password that you specified when you created the DSA key. To enable the Installer to use the
ssh and scp commands without being prompted for a password enter the following commands:

$ exec /usr/bin/ssh-agent $SHELL
$ /usr/bin/ssh-add

8. At the prompts, enter the pass phrase for each key that you generated. If you have configured
SSH correctly, you can now use the ssh or scp commands without being prompted for a
password.

To test the SSH configuration, enter the following commands:

$ ssh nodename1 uname -n
$ ssh nodename2 uname –n
$ scp test1 node2:test1

You should see the name of the server displayed without a request for a password. If any node
prompts for a password, verify that the ~/.ssh/authorized_keys file on that node contains
the correct public keys.

Note: The first time you use SSH to connect to a node from a particular system, you
might see a message stating that the authenticity of the host could not be
established. Enter yes at the prompt to continue. The node is now added to the

Page 24

Building an Oracle 10g RAC database (using Linux, iSCSI, and SAN)

~/.ssh/authorized_hosts file. Connect to each node using the node names and IP
addresses so that this prompt will not occur during installation.

9. To ensure that X11 forwarding will not cause the installation to fail, create the
~oracle/.ssh/config file. Put the following text into the file:

Host *
ForwardX11 no

10. The installer can now be run from this session. If it isn’t repeat step 7 before starting the
Installer.

11. Install rsh and rcp. Most recent versions of Linux do not automatically install these tools. In
RedHat they are located under Legacy Network Server when using the Package Management
Installation GUI.

a. Create a .rhosts file in the oracle home directory of each node. Add node information:

Node1 oracle
10.4.1.511 oracle
Node2 oracle
10.4.1.521 oracle

b. As root: Update the /etc/hosts.equiv file with the same information.

c. As root: Edit the /etc/xinetd.d/rsh file: set disable = no

d. As root: Edit file /etc/pam.d/rsh. Comment out the line as shown.

#auth required pam_nologin.so
auth sufficient /lib/security/pam_rhosts_auth.so
auth required pam_securetty.so
auth required pam_env.so
auth required pam_rhosts_auth.so
account required pam_stack.so service=system-auth
session required pam_stack.so service=system-auth

e. Reboot

Verify functionality of rsh and rcp by using the same methods as before for ssh and scp

Step 5: Configure Kernel Parameters

1. The recommended values from the Guide are given below. Modify for your server
conditions.

PARAMETER Value File

Page 25

Building an Oracle 10g RAC database (using Linux, iSCSI, and SAN)

semmsl
semmns
semopm

i

250
32000
100
128

/proc/sys/kernel/sem

shmall

2097152

/proc/sys/kernel/shmall

shmmax

Half the
size of
physical
memory
(in
bytes)

/proc/sys/kernel/shmmax

shmmni

4096

/proc/sys/kernel/shmmni

file-max 65536 /proc/sys/fs/file-max

ip_local_port_range

1024
65000

/proc/sys/net/ipv4/ip_local_port_range

rmem_default

262144

/proc/sys/net/core/rmem_default

rmem_max

262144

/proc/sys/net/core/rmem_max

wmem_default

262144

/proc/sys/net/core/wmem_default

wmem_max

262144

/proc/sys/net/core/wmem_max

2. To view your parameters:

$ cat /proc/sys/kernel/shmmni
or use the following commands from the Guide:

Parameter Command
semmsl, semmns,
semopm, and semmni

/sbin/sysctl -a | grep sem
This command displays the value of the semaphore parameters
in the order listed.

shmall, shmmax, and
shmmni

/sbin/sysctl -a | grep shm

file-max

/sbin/sysctl -a | grep file-ma

ip_local_port_range

/sbin/sysctl -a | grep
ip_local_port_range

Page 26

Building an Oracle 10g RAC database (using Linux, iSCSI, and SAN)

This command displays a range of port numbers.

rmem_default,
rmem_
max, wmem_default,
and wmem_max

/sbin/sysctl -a | grep net.core

Note: Include lines only for the kernel parameter values that you want to change. For

the semaphore parameters (kernel.sem), you must specify all four values.
However, if any of the current values are larger than the recommended value,
specify the larger value.

Step 6. Update the /etc/sysctl.conf file (RedHat Linux) for those values that need to
be adjusted:

#Parameter Value
#--------- ------------
kernel.sem = 250 32000 100 128
kernel.shmall = 2097152
kernel.shmmax = 536870912
kernel.shmmni = 4096
fs.file-max = 65536
net.ipv4.ip_local_port_range = 1024 65000
net.core.rmem_default = 262144
net.core.wmem_default = 262144

To change the current kernel parameter values:

/sbin/sysctl -p

Check the parameters again to ensure the values were accepted.

Step 7. Set Shell limits for the Oracle user.

 Add the following lines to /etc/security/limits.conf file:
oracle soft nproc 2047
oracle hard nproc 16384
oracle soft nofile 1024
oracle hard nofile 65536

Add or edit the following line in the /etc/pam.d/login file

session required /lib/security/pam_limits.so

Page 27

Building an Oracle 10g RAC database (using Linux, iSCSI, and SAN)

Make the following changes to the default shell start-up file.
Note: If the changes cause an error message whenever you ssh to a server then correct the
error or do the update after the installation.
For the Bourne, Bash, or Korn shell, add the following lines to the /etc/profile file
(or the /etc/profile.local file on SUSE systems):

if [$USER = "oracle"]; then
 if [$SHELL = "/bin/ksh"]; then
 ulimit -p 16384
 ulimit -n 65536
 else
 ulimit -u 16384 -n 65536
 fi
fi

Step 8: Create CRS and Database Home directories

Ex. CRS Home Directory: /u01/crs/oracle/product/10.1.0.3.0/crs1

Ex. Oracle Home Directory: /u01/app/oracle/product/10.1.0.3.0/db1

Create a shared folder for the CRS Voting Disk. ex. /u02/crsdata

Create a shared folder for the Oracle database data. ex. /u03/oradata

A folder can also be created for archive logs or flash-back files. ex. /u04/archive

Step 9: Start hangcheck timer

Check each node to determine if the hang-check timer is running:

1. Use lsmod to get a list of kernel modules on the server . Verify that hangcheck-timer is
included.

/sbin/lsmod

2. If the hangcheck-timer module is not listed for a node, start the module on the node by using a
command similar to the following (adjust the tick and margin parameters for your environment):

/sbin/insmod hangcheck-timer hangcheck_tick=30 hangcheck_margin=180

3. On Red Hat Enterprise Linux systems, add the command to the

/etc/rc.d/rc.local file.

E. Install Oracle CRS

Page 28

Building an Oracle 10g RAC database (using Linux, iSCSI, and SAN)

1. a. make sure you have run the following from the CRS preparation:

$ exec /usr/bin/ssh-agent $SHELL
$ /usr/bin/ssh-add

 b.set ORACLE_HOME=/u01/crs/oracle/product/10.1.0.3.0/crs1
2. Start the installer

$ ~/runinstaller &

3. The GUI should appear after a short delay and look similar to this:

b. Choose the installation directory.

Page 29

Building an Oracle 10g RAC database (using Linux, iSCSI, and SAN)

c. choose language

d. Add the public (server name) and private node names. Recommend doing only one
private node name now.

Page 30

Building an Oracle 10g RAC database (using Linux, iSCSI, and SAN)

If ssh,scp,rsh and rcp are not configured properly or the oracle user is not defined the
same on all nodes then the error message below will appear. Check the install logs in
oraInstall directory for clues on the reason for failure.

e. Choose the Interface type (Public. Private, Do not use) for each network interface. Bug
notice: after entering information, move cursor to next line before clicking on ‘Next’
button, otherwise program may freeze.

Page 31

Building an Oracle 10g RAC database (using Linux, iSCSI, and SAN)

f. Specify the shared file where the Oracle Cluster Registry (OCR) data will be stored.

g. Enter the Voting Disk file location.

Page 32

Building an Oracle 10g RAC database (using Linux, iSCSI, and SAN)

h. The OUI will now request running the orainstRoot.sh script (as root) on all nodes.

i. The OUI will now show a summary page before installation.

Page 33

Building an Oracle 10g RAC database (using Linux, iSCSI, and SAN)

j. The installation begins.

k. The OUI will now display a request to run root.sh

Page 34

Building an Oracle 10g RAC database (using Linux, iSCSI, and SAN)

l. Run the root.sh scripts on each node (as root). On the first node the output will look
similar to the picture below.

m. The OUI now shows a screen that indicates the starting of the CRS configuration
assistants.
.

Page 35

Building an Oracle 10g RAC database (using Linux, iSCSI, and SAN)

n. The installation is now complete.

Page 36

Building an Oracle 10g RAC database (using Linux, iSCSI, and SAN)

F. Install Oracle Database Software

1. ./install &
The usual welcome screen will appear.

2. Choose the installation directory

3. Specify the nodes to be added to the cluster

Page 37

Building an Oracle 10g RAC database (using Linux, iSCSI, and SAN)

4. Choose the type of installation

5. The installer will check if installation requirements have been met.

Note: Kernel parameter will give a warning status if there is less than 2G of memory allocated to
the SGA. This is much more than the minimum requirement. Also there may be a warning for
missing packages even though they are installed. Verify manually (rpm –q package_name-*)

Page 38

Building an Oracle 10g RAC database (using Linux, iSCSI, and SAN)

6. Choose whether or not to create a starter database.

7. Summary page is shown next

Page 39

Building an Oracle 10g RAC database (using Linux, iSCSI, and SAN)

8. Install page shows progress of installation.

9. The VIP configuration assistant starts. This GUI is the only reliable means of configuring the
VIP for the cluster.

Page 40

Building an Oracle 10g RAC database (using Linux, iSCSI, and SAN)

10. Coose the network interfaces to be used.

11. Enter the IP address and alias name for the nodes that was used during the cluster
installation.

Page 41

Building an Oracle 10g RAC database (using Linux, iSCSI, and SAN)

12. A summary page is shown prior to installation.

13. Progress page shows installation

Page 42

Building an Oracle 10g RAC database (using Linux, iSCSI, and SAN)

14. At the end of the installation a results page will show what VIP addresses were installed.

15. Final database software installation page gives the URL’s for accessing web based utilities.

Page 43

Building an Oracle 10g RAC database (using Linux, iSCSI, and SAN)

Page 44

Note: Make a copy of this page since the location of this information is not included on

the page. However the portnumber information is available at
$ORACLE_HOME/install/portlist.ini

The creation and installation of the Oracle 10g RAC database is now complete. The use of
commodity servers using Linux should make it possible to increase the size of the Cluster in the
future as your system’s needs grow. The computing power of this small setup should match the
ability of a mid-size server from a few years ago. The present hardrive capacity easily exceeds
what was available just a few years ago. This architecture provides a level of fault tolerance and
price to performance capabilities that only a few years ago would not have been available except
in top-tier servers.

	Building an Oracle 10g RAC database
	(using Linux, iSCSI and SAN)

